Stationary points

maximum

In this activity you will use differentiation to find stationary points then sketch curves.

Information sheet

There are 3 types of stationary points: maximum points, minimum points, and points of inflexion.

Think about...

What happens to the gradient as the curve passes through:

- the maximum point?
- the minimum point?
- a point of inflexion?

Just before a **maximum point** the gradient is positive. At the maximum point the gradient is zero, and just after the maximum point it is negative.

The value of $\frac{dy}{dx}$ is decreasing,

so the rate of change of $\frac{dy}{dx}$ with respect to x is negative.

This means $\frac{d^2 y}{dx^2}$ is negative at the maximum point.

point of inflexion

minimum

Minimum points

Just before a **minimum point** the gradient is negative, at the minimum the gradient is zero, and just after the minimum point it is positive.

The value of $\frac{dy}{dx}$ is increasing, so the rate of change of $\frac{dy}{dx}$ with respect to x is positive. This means $\frac{d^2y}{dx^2}$ is positive.

To find the type of stationary point, consider the gradient at each side of it.

To sketch a curve

Find the stationary point(s)

Find an expression for $\frac{dy}{dx}$ and put it equal to 0,

then solve the resulting equation to find the *x* coordinate(s) of the stationary point(s).

Find $\frac{d^2 y}{dx^2}$ and substitute each value of x to find the kind of stationary point(s).

(+ suggests a minimum, – a maximum, 0 could be either of these or a point of inflexion)

Use the curve's equation to find the *y* coordinate(s) of the stationary point(s).

Find the point(s) where the curve meets the axes

Substitute x = 0 in the curve's equation to find the y coordinate of the point where the curve meets the y axis.

Substitute y = 0 in the curve's equation. If possible, solve the equation to find the *x* coordinate(s) of the point(s) where the curve meets the *x* axis.

Sketch the curve, then use a graphic calculator to check.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - 2x....(1)$$

At stationary points $\frac{dy}{dr} = 0$

This gives
$$2x = 4$$
 so $x = 2$

From (1) $\frac{d^2 y}{dx^2} = -2$ suggesting a maximum.

Substituting x = 2 into $y = 5 + 4x - x^2$ gives:

y = 5 + 8 - 4 = 9 so (2, 9) is the maximum point

Curve crosses the axes at (-1, 0) and (5, 0)

Example B To sketch the curve $y = 2 + 3x^2 - x^3$

 $\frac{dy}{dx} = 6x - 3x^2$(1) When x = 0 y = 2When y = 0 $2 + 3x^2 - x^3 = 0$ At stationary points $\frac{dy}{dr} = 0$ Solving such cubic equations is difficult $6x - 3x^2 = 0$ and not necessary. It is possible to sketch the curve using just the stationary points and the fact

that it crosses the y axis at (0, 2).

From (1)

with solutions

This means

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6 - 6x$$

Factorising gives 3x(2-x) = 0

which is positive when x = 0 and negative when x = 2.

x = 0 or x = 2

Substituting the values of x into $y = 2 + 3x^2 - x^3$: x = 0 gives y = 2and x = 2 gives y = 6

(0, 2) is a minimum point and (2, 6) is a maximum point

Note

Use a graphic calculator to check the sketch. If you wish, you can use the trace function to find the x coordinate of the point where the curve crosses the x axis. In this case the curve crosses the x axis at approximately (3.2, 0).

Example C To sketch the curve $y = x^4 - 4$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^3....(1)$$

 $4x^3 = 0$ so x = 0 and y = -4

At stationary points $\frac{dy}{dx} = 0$

This gives

From (1)
$$\frac{d^2 y}{dx^2} = 12x^2 = 0$$
 when $x = 0$

When x = 0 y = -4When y = 0 $x^4 - 4 = 0$ $x^4 = 4$ so $x^2 = 2$ and $x = \pm \sqrt{2}$ Curve crosses the axes at (0, -4), $(-\sqrt{2}, 0)$ and $(\sqrt{2}, 0)$

In this case the stationary point could be a maximum, minimum, or point of inflexion.

To find out which, consider the gradient before and after x = 0.

When x is negative
$$\frac{dy}{dx} = 4x^3$$
 is negative

When *x* is positive $\frac{dy}{dx}$ is positive

so (0, -4) is a minimum point

Think about...

- Why is $\frac{d^2 y}{dx^2}$ negative for a maximum point?
- How can you tell where the curve crosses the y axis and the x axis?
- How can you tell what the function does as $x \to \pm \infty$?

Try these

- **1** For each of the curves whose equations are given below:
- find each stationary point and what type it is
- find the coordinates of the point(s) where the curve meets the x and y axes
- sketch the curve
- check by sketching the curve on your graphic calculator.
- a $y = x^{2} 4x$ b $y = x^{2} - 6x + 5$ c $y = x^{2} + 2x - 8$ d $y = 16 - x^{2}$ e $y = 6x - x^{2}$ f $y = 1 - x - 2x^{2}$ g $y = x^{3} - 3x^{2}$ h $y = 16 - x^{4}$ j $y = x^{3} + 1$
- 2 For each of the curves whose equations are given below:
- find each stationary point and what type it is
- find the coordinates of the point where the curve meets the y axis
- sketch the curve
- check by sketching the curve on your graphic calculator.
- **a** $y = x^3 + 3x^2 9x + 6$ **b** $y = 2x^3 3x^2 12x + 4$

c
$$y = x^3 - 3x - 5$$
 d $y = 60x + 3x^2 - 4x^3$

e $y = x^4 - 2x^2 + 3$ **f** $y = 3 + 4x - x^4$

Reflect on your work

- How does finding stationary points help you to sketch a curve?
- Is it possible to know how many stationary points there are by just looking at the function?
- What other information is it useful to find before you try to sketch a curve?